Derivatives of Eigenvalues

Feng Ling

September, 2016
Let's assume we work in a vector space with a non-degenerate symmetric bilinear pairing $\langle\cdot, \cdot\rangle$, and a differential operator d satisfying the usual Leinbiz's rule. We will use A to denote linear operator/matrix in a basis $A=\left(a_{i j}\right)$ and \mathbf{w} for a vector $w=\left(w_{i}\right)$.

Assuming L is not defect at the considered eigenvalue (multiplicity $=1$), we have two equations $\mathbf{L v}=\lambda \mathbf{v}$ and $\mathbf{u}^{\dagger} \mathbf{L}=\lambda \mathbf{u}^{\dagger}$, where λ is the eigenvalue, \mathbf{v} is the (right) eigenvector, and \mathbf{u} the left eigenvector. (Note that a left eigenvector of a matrix A is a (right) eigenvector of the adjoint A^{\dagger}.)

Now differentiate the first (right) eigenvector equation gives us

$$
\begin{aligned}
d(\lambda \mathbf{v}) & =d(\mathbf{L} \mathbf{v}) \\
d \lambda \mathbf{v}+\lambda d \mathbf{v} & =d \mathbf{L} \mathbf{v}+\mathbf{L} d \mathbf{v}
\end{aligned}
$$

Pair the above with the left eigenvectors yields

$$
\begin{aligned}
\langle\mathbf{u}, d \lambda \mathbf{v}\rangle+\langle\mathbf{u}, \lambda d \mathbf{v}\rangle & =\langle\mathbf{u}, d \mathbf{L} \mathbf{v}\rangle+\langle\mathbf{u}, \mathrm{L} d \mathbf{v}\rangle \\
d \lambda\langle\mathbf{u}, \mathbf{v}\rangle+\langle\lambda \mathbf{u}, d \mathbf{v}\rangle & =\langle\mathbf{u}, d \mathrm{~L} \mathbf{v}\rangle+\langle\mathbf{u}, \mathrm{L} d \mathbf{v}\rangle \\
d \lambda\langle\mathbf{u}, \mathbf{v}\rangle & =\langle\mathbf{u}, d \mathbf{L} \mathbf{v}\rangle+\left\langle\mathbf{L}^{\dagger} \mathbf{u}-\lambda \mathbf{u}, d \mathbf{v}\right\rangle \\
d \lambda & =\frac{\langle\mathbf{u}, d \mathbf{L} \mathbf{v}\rangle}{\langle\mathbf{u}, \mathbf{v}\rangle}
\end{aligned}
$$

Now if the operator L is self-adjoint (e.g. symmetric if we are over \mathbb{R}), we then have $\mathbf{u}=\mathbf{v}$, thus

$$
d \lambda=\frac{\langle\mathbf{v}, d \mathbf{L} \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle}=\langle\mathbf{v}, d \mathbf{L} \mathbf{v}\rangle
$$

Or in another notation, we have $d \lambda=\mathbf{v}^{\dagger} d \mathbf{L} \mathbf{v}$.
Same principles apply for the generalized eigenvalue problem. If we again have left eigenvector \mathbf{u} and (right) eigenvector \mathbf{v} such that $(L-\lambda M) \mathbf{v}=\mathbf{u}^{\dagger}(L-\lambda M)=0$, we can derive

$$
\begin{array}{r}
d(\mathrm{~L}-\lambda \mathrm{M}) \mathbf{v}=0 \\
(d \mathrm{~L}-d \lambda \mathrm{M}-\lambda d \mathrm{M}) \mathbf{v}+(\mathrm{L}-\lambda \mathrm{M}) d \mathbf{v}=0
\end{array}
$$

Pairing with \mathbf{u} returns

$$
\begin{aligned}
\mathbf{u}^{\dagger}(d \mathbf{L}-d \lambda \mathbf{M}-\lambda d \mathbf{M}) \mathbf{v}+\mathbf{u}^{\dagger}(\mathbf{L}-\lambda \mathbf{M}) d \mathbf{v} & =0 \\
\mathbf{u}^{\dagger}(d \mathbf{L}-d \lambda \mathbf{M}-\lambda d \mathbf{M}) \mathbf{v} & =0 \\
\mathbf{u}^{\dagger} d \mathbf{L} \mathbf{v}-\mathbf{u}^{\dagger} \lambda d \mathbf{M} \mathbf{v} & =\mathbf{u}^{\dagger} d \lambda \mathbf{M} \mathbf{v} \\
d \lambda \mathbf{u}^{\dagger} \mathbf{M} \mathbf{v} & =\mathbf{u}^{\dagger} d \mathbf{L} \mathbf{v}-\lambda \mathbf{u}^{\dagger} d \mathbf{M} \mathbf{v} \\
d \lambda & =\frac{\mathbf{u}^{\dagger} d \mathbf{L} \mathbf{v}-\lambda \mathbf{u}^{\dagger} d \mathbf{M} \mathbf{v}}{\mathbf{u}^{\dagger} \mathbf{M} \mathbf{v}}
\end{aligned}
$$

Now if we assume both L and M to be self-adjoint, we will again have $\mathbf{u}=\mathbf{v}$. Then normalizing \mathbf{v} such that $\langle\mathbf{v}, \mathbf{M v}\rangle=1$ gives $d \lambda=\mathbf{v}^{\dagger} d \mathbf{L} \mathbf{v}-\lambda \mathbf{v}^{\dagger} d \mathbf{M} \mathbf{v}$.

