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Let’s assume we work in a vector space with a non-degenerate symmetric bilinear pairing (-, -),

and a differential operator d satisfying the usual Leinbiz’s rule. We will use A to denote linear

operator/matrix in a basis A = (a;;) and w for a vector w = (wj).

Assuming L is not defect at the considered eigenvalue (multiplicity = 1), we have two equations
Lv = Av and ufL = Auf, where X is the eigenvalue, v is the (right) eigenvector, and u the left

eigenvector. (Note that a left eigenvector of a matrix A is a (right) eigenvector of the adjoint Af.)

Now differentiate the first (right) eigenvector equation gives us

d(Av) =d(Lv)
d v + Adv = dLv + Ldv

Pair the above with the left eigenvectors yields

(u,dA\v) + (u, Adv) = (u,dLv) + (u, Ldv)
dA\(u,v) + (Au,dv) = (u,dLv) + (u,Ldv)
d\(u,v) = (u,dLv) + (LTu — \u, dv)
_ {u,dLv)
d\ = v

Now if the operator L is self-adjoint (e.g. symmetric if we are over R), we then have u = v, thus

v,dLv)

d\ = < = (v,dLv)

(v,v)
Or in another notation, we have d\ = vidLv.

Same principles apply for the generalized eigenvalue problem. If we again have left eigenvector

u and (right) eigenvector v such that (L — AM)v = uf(L — AM) = 0, we can derive

d(L — AM)v =0
(dL — dAM — AdM)v + (L — AM)dv = 0

Pairing with u returns

u'(dL — dAM — AdM)v +u'(L — AM)dv = 0
u'(dL — dAM — AdM)v = 0
uldLv — ufAdMv = ufdA\Mv
d\u'Mv = uldLv — Au'dMv
ufdLv — AufdMv
ufMv
Now if we assume both L and M to be self-adjoint, we will again have u = v. Then normalizing v
such that (v, Mv) = 1 gives d\ = vidLv — AvidMv.

d\ =




