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This note attempts to give an intuitive explanation of cofiber and fiber sequences in as

basic of a language as possible without losing rigor1. Then the classical application of the fiber

sequence induced long exact sequence to the calculation of π3(S
2) is justified. In essence this is

a spelled out guide for sections 8.1-5 and 9.3 of May’s A Concise Course in Algebraic Topology.

1 Motivations

We want to study the structures of new spaces. And one obvious way to go about this is to study

maps between spaces that we know a lot about and these unknown spaces.

But an arbitrary map can behave very badly even if we assume strong conditions like continuity.

One such example is the space filling curves.

Therefore we really want to work with nice maps that carry over properties and knowledge we

desire. Intuitively, the simplest of maps are inclusions/injections and projections/surjections. As

a result, given an arbitrary map, we would like to compare how similar it is to suitable notion of

injective maps and surjective maps2 in a nice category of spaces.

2 Based Spaces and Based Maps

The category of spaces that we will be working in are the based spaces. They are nice topological

spaces3 with an added distinguished point called its base point (from now on denoted by ∗), like
how a group has the identity as a distinguished element.4

We call maps between based spaces based maps if it is continuous and respects the base point,

i.e. f : X → Y is based if f(∗X) = ∗Y .

Luckily the function space of based maps Maps(X,Y ) for X,Y based spaces is also a based

space with its base point being the constant map sending everything to base point of Y . 5

Turns out we can have a natural adjunction homeomorphism6

Maps(X,Maps(Y, Z)) ∼= Maps(X ∧ Y, Z) (1)

We know what is on the left hand side of the equation, and to understand the right-hand side we

only need to know what does ∧ mean.

1the (not) notorious “explain like I’m an analyst” style, no disrespect to analysis.
2cofibrations and the (Hurewicz) fibration.
3Specifically the compactly generated topological spaces. See chapter 5 of May.
4Our category is pointed, has a zero object, namely the space with just the base point.
5This means that based maps of spaces are exponential, or our special category is cartesian closed.
6recognizable as an analog of people’s favorite tensor-hom adjunction, namely Hom(X,Hom(Y, Z)) ∼= Hom(X ∧

Y,Z), except the homomorphisms and products are the ones in our special category.



2 BASED SPACES AND BASED MAPS

Definition. X ∧ Y := (X × Y )/(X ∨ Y )7

Here × denote the usual Cartesian product with base point (∗X , ∗Y ). And (X ∨ Y ) is space

X,Y glued at their base point with no other changes, i.e. (∗X , y) ∪ (x, ∗Y ) for all x ∈ X, y ∈ Y

with base point also at (∗X , ∗Y ). And the thing behind the slash is the quotient, in other words,

they are squeezed together to form the base point of the resulting space.

Now to justify our relation 1, we only need to verify that base points are matched correctly on

both sides because continuity should be preserved trivially.

Another important property of smash product is that it is also (anti)symmetric with respect to

the two input spaces. In other words, X ∧ Y = −Y ∧X ∼= X ∧ Y .

Definition. Below I is the unit interval [0, 1] and S1 is the circle8

1. The loop space of X is ΩX := Maps(S1, X), with base point the constant loop about ∗X .

2. The (reduced) suspension of X is ΣX := X ∧ S1, with base point indicated in red below.

3. The path space9 of X is PX := Maps(I,X), again with base point the constant map of ∗X .

4. The (reduced) cone of X is CX := (X×I)/(X×{0}), with base point indicated in red below.

Here are some pictures illustrating the above definitions. From now on we denote the base point

in color red.

Proposition 2.1. Clearly substituting S1 in place of Y in Equation 1, we get

Maps(X,ΩZ) ∼= Maps(ΣX,Z) (2)

This is evidently true even without resorting to our previous adjunction relation. Given a point

x ∈ X, we canonically picks out a loop in ΣX. Thus mapping x to loops in some space Z is really

just mapping a loop in ΣX to Z. A picture of the loop in ΣX given a point x ∈ X is shown below.

7It was brought to my attention that the choice of notation has to do with how a cross × is formed by a ∨ sitting

on top of a ∧, fulfilling the usual intuition of quotients.
8Turns out homotopically, the contractible spaces and the circle are two spaces that we know really well.
9Old literature adhereing to Serre might use the notation EX. This is also distinguished from Y I in May as the

paths in PX have to start at the base point while the other one does not (Hence it is appropriatedly named the “free

path space”). This is important as PX is clearly contractible by tracing back to the starting point of each path,

while one cannot do that in XI .
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3 Cofiber and Fiber Sequences

Now we want to construct our main players - the cofiber and fiber sequences. The cofiber sequence

gives us concrete information on how related is our arbitrary map f : X → Y is to a nice inclusion,

and the fiber sequence to a nice surjection.

Definition. The cofiber sequence of map f : X → Y is

X Y Cf ΣX ΣY ΣCf ΣΣX · · ·f i (3)

where i is an inclusion map and Cf is called the (homotopy) cofiber of the map f . The sequence

continues indefinitely to the right with one more suspension operator every 3 steps.

The cofiber Cf can be defined as CX ∪f Y . This notation means that we glue the cone of X

and Y along the image of X under f . Pictorially,

We can also express this relation via a (commuting) pushout square:

X Y

CX X ∪f Y

f

⌜(id,1) i

Crucially, we are calling the above expression 3 the cofiber sequence because (homotopically)

we are doing the same thing to our map every step.

Lemma 3.1. ΣX ≃ Ci
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3 COFIBER AND FIBER SEQUENCES

Proof. Using our definition of the cofiber above, we know Ci is CY glued to the image of Y in Cf .

Now this give us a homotopical way to contract things outside of f(X) to the base point because

we can just “move” the line of base points outside. Therefore we get Σf(X). Since copies of X

lives in between the pinched ends and f(X) in the middle, it really is just ΣX.

Based on our previous adjuction relation, we can in fact obtain a “dual” sequence.

Definition. The fiber sequence of map f : X → Y is

· · · ΩΩY ΩFf ΩX ΩY Ff X Yπ f
(4)

where π is a projection map and Ff is called the (homotopy) fiber of the map f . The sequence

continues indefinitely to the left with one more looping operator every 3 steps.

The fiber Ff is defined to be X ×f PY 10. This notation means that X ×f PY = {(x, γ) ∈
X × PY : f(x) = γ(1)}.

The same information is conveyed in the (commuting) pullback square below.

X ×f PY PY

X Y

⌟π ev(1)

f

We are calling expression 4 fiber sequence because (homotopically) we are doing the same thing

to our map every step as well.

Lemma 3.2. ΩY ≃ Fπ

Proof. Applying the definition of the fiber to the map π, we get Fπ = {((x, γ), α) ∈ Ff × PX :

π(x, γ) = x = α(1)} = {(x, γ, α) ∈ X × PY × PX : x = α(1), f(x) = γ(1)}. We can see this is

equivalent to ΩY because a coordinate (x, γ, α) contains exactly the same data as that of a loop in

Y. Namely we have two paths f(α) and γ starting at the base point and ends at f(x), which forms

a loop. See picture below.

10the fibered product
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4 Long Exact Sequences of Homotopic Maps

Definition. The homotopy classes of maps from space X to Y is defined as

[X,Y ] := Maps(X,Y )/ ≃

Theorem 4.1. For a fiber sequence of f : X → Y and an arbitrary based space Z, we have the

following a long exact sequence (LES) of maps up to homotopy:

· · · [Z,ΩFf ] [Z,ΩX] [Z,ΩY ] [Z,Ff ] [Z,X] [Z, Y ]π∗ f∗

Here a LES means that at successive stage Z ′ Z Z ′′i j
we have j(z) = ∗Z′′ if and only

if there is a z′ such that z = i(z′). 11

Proof. We separate the proof into 3 parts.

1. We claim that the last stage of the sequence is exact. This stage is exact if (a) for any map

g : Z → X with the property f∗(g) is trivial, there is g′ : Z → Ff such that π∗(g′) = g, and

(b) f∗(π∗(g′)) is trivial for all g′ : Z → Ff . Note that by definition, f∗(g)(z) = (f ◦g)(z), thus
it is trivial means that f(g(z)) is homotopic to the trivial map. Since PY is contractible, the

said homotopy gives a map from Z to PY . Thus by universal property of pullback squares, we

know there exists a suitable g′. For (b) we know f∗(π∗(g′)) = (f ◦ π ◦ g′) which is homotopic

to the trivial map since we can compose g′ with the projection to the contractible PY .

Z Ff PY

X Y

g′

g ⌟
π ev(1)

f

11One motivation for this exactness criterion is that it is sort of the easiest chain of maps we can think of; anything

goes further than a stage is exactly the trivial map. One imprecise analogy can be made between this and the

memoryless-ness of Markov chains, where states of ≥ 2 steps ago have trivial/no effects on the current state.
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4 LONG EXACT SEQUENCES OF HOMOTOPIC MAPS

2. Looping and fibering commutes12.

First we need to show Ω(PY ) ∼= P (ΩY ). By passing through the adjunction, we can use the

(anti)symmetry of smash products between I and S1 and then back through the adjunction

relation to get it.

Because looping is a functor, we can apply it to our previous pullback square and retain it’s

universal property.

Ω(Ff) Ω(PY )

ΩX ΩY

⌟
Ωπ

Ωf

But then using Ω(PY ) ∼= P (ΩY ) at the upper right corner and by definition of the (homotopy)

fiber, we get another pullback square,

F (Ωf) P (ΩY )

ΩX ΩY

⌟
Ωf

Thus by universal property of pullbacks, we have Ω(Ff) ∼= F (Ωf).

3. Since PY is contractible to the constant path at ∗Y , we can “extend” this homotopy through

our diagram to get a homotopy between Ff = X×f PY and X×f cst(∗Y ) = {x ∈ X : f(x) =

∗Y } = f−1(∗Y )13.

4. Finally, show the triangle and induct, we can prove that the whole sequence is exact.

We have a corresponding theorem about LES for the cofiber sequence. The only difference is

that there we are mapping from our (cofiber) sequence of spaces to Z an arbitrary space14. The

proofs are almost exact parallels of above (also contained in May section 8.4).

To make everything more practical, we want to translate this LES of based spaces to that of

abelian groups, a category where everything is classified and exactness reduce to the normal notion

of ker = im.

Proposition 4.2. [ΣΣX,Y ] is an abelian group for all based spaces X and Y .

This can be reasoned as commuting two small (homotopy) squares inside a big (homotopy)

square by selectively contracting parts to the constant (base point) map. It is done at the end of

May section 8.2.

12This in fact generalizes to limits and limits or colimits and colimits commute.
13While this is a correct reasoning, a rigorous proof would require the explicit production of that “extended”

homotopy, which is presented as a lemma in the Appendix.
14Contravariant instead of covariant.
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5 Facts about Circles and Spheres

First a fact that is easy to believe:

Proposition 5.1. ΣSn = Sn+1

In low dimensions, a simple picture like the ones in secion 2 above will do. In general, we can

see that Sn is exactly the equator of Sn+1.

Next we introduce the concept of “Hopf bundle” or “Hopf fibration.” These are maps between

a source and a target sphere of certain dimensions with sphere of another lower dimension as its

fiber. It is a (fiber) bundle in the sense that on any open set of the base sphere, the source looks

like Cartesian product of the fiber and the target15. The one of interest to us is the following

f−1(pt) ∼= S1 X = S3

Y = S2

f

To be able to apply our fiber sequence machinery to the Hopf map, we need to know that up

to homotopy, the actual fiber (f−1(pt) ∼= S1) from this fiber bundle is the same as the fiber (Ff)

that was used in the fiber sequence earlier16.

Proposition 5.2. [Sm, Sm] ∼= Z for all m ∈ Z≥1.

This homeomorphism is realized by the degree map. Intuitively we can see that wrapping

spheres around itself different number of times should give non homotopic maps as the preimage

of any point changes multiplicity.

Proposition 5.3. [Sk, S1] ∼= 0 for all k ̸= 1.

This is true because the universal cover R of S1, realized by the map ϕ : R → S1 ⊂ C by

sending t to exp(2π
√
−1t), is contractible. Then by covering space theory, the lifting property17

dictates that maps into S1 can be lifted to maps into R. Thus contractibility gives a homotopy of

any map to the constant trivial map.

6 Punchline

Theorem 6.1. π3(S
2) = [S3, S2] ∼= Z

15This property is usually called ‘local triviality.’ The existence of such Hopf bundles at the specified dimensions

are closely related to the “uniqueness” of the 4 division algebras, namely R,C,H,O and their corresponding unit

“norm” spheres.
16This require first knowing Hopf bundle is a (Hurewicz) fibration, then applying the lemma in Appendix again

gives us what we want. Turns out that in general, a fiber bundle does not have to be a (Hurewicz) fibration.
17fibration and CHP
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Proof. Inspecting the LES induced by the fiber sequence of the Hopf bundle (i.e. a substitution of

the total space E = S3 for X, base space B = S2 for Y , fiber bundle map p for f , fiber F = S1 for

Ff , and finally the space Z = S2 = ΣΣS0), we get the following exact sequence in abelian groups

· · · [S2,ΩS1] [S2,ΩS3] [S2,ΩS2] [S2, S1] · · ·

Applying the adjunction relation (Eq. 2) to first three terms and using proposition 5.2 on the first

and last term and proposition 5.3 on the second term, we get a “short exact sequence”

[S2,ΩS1] ∼= [S3, S1] ∼= 0 [S2,ΩS3] ∼= [S3, S3] ∼= Z [S2,ΩS2] ∼= [S3, S2] [S2, S1] ∼= 0

Therefore the injective-ness and surjective-ness of the middle map ensures that [S3, S2] ∼= Z.

This theorem shows that there is somehow a whole integral family of nontrivial maps from the

3-sphere to the 2-sphere up to homotopy, a fact that topologists would sometimes analogize to the

2-sphere having a “3-dimensional hole.”
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Appendix

Lemma. (cf. exercise #1 in Chapter 8 of May) For a fibration f : X → Y , we have Ff ≃ f−1(∗Y )

Proof. Since we have a commuting square, the fibration gives us a lifting map

Ff = X ×f Y I X

Ff × I Y

π

(id,id,1) f

g

g̃

where g(x, γ, t) = γ(t) and π is the projection on first coordinate.

Next we can construct a continuous homotopy Ht : Ff → Ff via Ht(x, γ) = (g̃(x, γ, t), γ|[0,t]).
Note that when t = 1, we have H1(x, γ) = (x, γ) the identity map on Ff . When t = 0, it gives

H0(x, γ) = (f−1(γ(0) = ∗Y ), cst∗Y ).

Now define j : f−1(∗Y ) → Ff via j(x) = (x, cst∗Y ), then the above gives the following diagram:

Ff f−1(∗Y ) Ff
g̃(−,−,0)

H1≃id

j

This demonstrates that we have a homotopic left inverse of j. Since we have projection onto

the first coordinate as a right inverse, namely π ◦j(x ∈ f−1(∗Y )) = π(x, cst∗Y ) = x, we have proved

that Ff ≃ f−1(∗Y ).
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