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Nomenclature

a linear acceleration, m/s2

b, b′, c, c′, d, d′ indeterminate constants
U gravitational potential
x, y, z inertial frame position vectors
X,Y, Z body frame position vectors
α angular acceleration, rad/s2

∆v change of a vector v
H(f) Hessian of a function f
∇f gradiant of a function f
ω angular velocity, rad/s
ν phase of an elliptical orbit;
||w|| (vector) norm of w

Subscripts
ACC from accelerometer measurements
gg from gravity gradient
ng non-gravitational
n in normal direction
r in radial direction
t in tangential direction

I. Introduction

Due to both technological constraints on the con-
struction and positioning of the accelerometer as
well as other internal spacecraft dynamics (e.g. fuel
levels and other dynamics), a misalignment almost
always exists between the spacecraft’s actual cen-
ter of mass and the location of the accelerometers.1
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This means that the accelerometer readings are not
exactly a faithful representation of the actual space-
craft center of mass dynamics. Usually, one does
not model this discrepancy directly for orbit deter-
mination purposes. Instead it is treated as noise
and an appropriate fitting will hopefully avoid any
problems, for the differences are relatively small.

However, it is still interesting to know if there
is any dynamical significance should we choose to
model this deviation. Results of such estimates
would then help us in make better engineering deci-
sion on choosing the adaquate accelerometer setup
as well as reassure our confidence in the tracking
and orbit determination results. Hence we analyzed
the dynamical effects of modeling these deviations
for the Gravity Recovery and Climate Experiment
(GRACE) in this study.

II. Dynamical Models

II.A. Analytic Analysis

We have the following governing equations of motion

ẍ =∇U(x) + ang (1)

y =R(t)Y (2)

z =R(t)Z (3)

Here x,X represent the geocentric center of mass
position vector of our spacecraft (in inertial and
body-fixed frames, resp.), y, Y the vector from cen-
ter of mass to on-board accelerometer, and z, Z the
vector from center of mass to antenna phase cen-
ter. U is the gravitational potential and R(t) the
frame transformation from the body-fixed frame to
the inertial reference frame. See Figure 1 below.

Figure 1. Graphical representation of the system.

The goal is to study how does the position off-
set of the accelerometer from the center of mass (a
nonzero Y ) affect our knowledge of spacecraft dy-
namics. Since we have range measurements of the
phase center from tracking, we want to compare its
measured position with the propagated value of x+z
under different models of Y .
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If we assume Y to be constant for simplicity, we
will additionally have

ẏ =ṘY +RẎ = ṘY = ω × y

ÿ =ω × ẏ + ω̇ × y = ω × (ω × y) + α× y (4)

Since the reference frame transformation R(t) are
a fixed time series derived from physical measure-
mentsa, comparing x is good enough as long as Z
stays constant. Then the only term left to be ex-
panded is the non-gravitational acceleration ang in
Equation 1. Recall from the measurement equa-
tion,1 we have

ang = −aACC − ÿ + agg (5)

where aACC are the accelerometer measurements
and agg the gravity gradient term, which is simply

agg =∇U(x+ y)−∇U(x)

≈H(U(x))y (6)

neglecting the O(|y|2) termsb. Here H(U(x)) is the
Hessian of the gravitational potential at x. Now
if we substitute Equations 4, 5, and 6 back into ẍ
(Equation 1), it is clear that we can factor out a
scalar ||Y || as all terms are either not a function of
Y or linear with respect to Y .

II.B. Order of Magnitude Estimates

To gauge how significant and sensible that our con-
sideration of the dynamical effects from a reason-
able deviation between the accelerometer and space-
craft center of mass are, we used GRACE teleme-
try data2c, assuming ||Y || to be 300µm, ||Z|| to be
1.5md, and the scalar and J2 terms of the gravi-
tational potential U to obtain estimates of ||agg||
and ||ÿ|| to be approximately 7nm/s and 0.8nm/s2,
resp. Naive integration shows that these will yield
deviations in x on the order of 102 meters over one
day.

II.C. Parametric Study

Based on the above assumptions and analysis, the
only varying parameter is a unit vector in R3 ac-
counting for the direction of accelerometer misalign-
ment since we can factor out the scalar ||Y ||e.

aGRACE satellites have on-board star cameras to cali-
brate the attitudes. See Section III.A, footnote h, and SCA1B
in [Case et. al.]2

bThis is warranted as we would be dealing with things
below ordinary precision. Also see [Milani and Gronchi]1

cAll accelerometer readings used have daily averaged bi-
ases removed.

dThese numbers are derived from the mission specification
and geometrical configuration of the satellite3

eIn practice, it should be rather obvious that minimizing
||Y || is the most desirable thing to do. Hence its linearity

Given this input, we can propagate two trajec-
tories of the spacecraft with and without the mis-
alignment. The difference trajectory ∆x in Radial-
Tangential-Normal (RTN) frame can then be mod-
eled in two meaningful ways. The first (Model A)
takes into account only the differences in the initial
conditions between the two orbitsf:

∆xr = br + cr cos(ν) + dr sin(ν) (7)

∆xt = bt + b′t∆T + ct cos(ν) + dt sin(ν) (8)

∆xn = bn + cn cos(ν) + dn sin(ν) (9)

where all the coefficients are some indeterminate
constants, and ν is the phase of the orbit, i.e. the
sum of its argument of periapsis and its true
anomaly.

If we instead also take into account the effects of
the ballistic coefficient (i.e. effects of the derivative
of the mean motion) to model drag, we obtain a
second model (Model B)g:

∆xr =br + (cr + c′r∆T ) cos(ν)

+ (dr + d′r∆T ) sin(ν) (10)

∆xt =bt + b′t∆T + b′t∆T 2 + (ct + c′t∆T ) cos(ν)+

(dt + d′t∆T ) sin(ν) (11)

∆xn =bn + b′t∆T + (cn + c′n∆T ) cos(ν)+

(dn + d′n∆T ) sin(ν) (12)

where all the coefficients are again constants and ν
still the phase of the orbit.

With these models, we can simply perform a
generic least-squares analysis and study the relation-
ship between the root-mean-square (RMS) of the
post-fit residues versus the given input unit vector.

III. Results and Discussion

III.A. Numerical Integrations

We used actual state of GRACE spacecraft A on
2008/05/18 00:00:00 (UTC) as initial conditions, at-
titude data for angular velocityh, and accelerome-
ter readings for both aACC(t) and α(t), cf. GNV1B,
SCA1B, and ACC1B in [Case et. al.]2

(see end of Section II.A) means that we won’t reach any more
interesting conclusions by varying it.

fThis corresponds to the homogenous solution to the Hills
equations, cf. Equation 1.13 in [Coloumbo]4

gThis corresponds to the oscillatory solution of the Hills
equations, cf. Equation 1.17 in [Coloumbo]4

hIt was derived from the quaternion representation q(t) of
R(t) using the following interpolation

ω(t) =
2

∆t
ln(q(t+∆t)⊗ q−1(t)) (13)
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Integrating with the Adams-Bashforth method
under quadruple precisioni, we get the following
plots of post-fit residues with respect to different in-
put misalignment directions in Figure 2 and 3. Here
the directions are expressed in standard longitude
and latitude coordinates in the Science Reference
Frame (SRFj), and they lie on a rectangular grid of
3◦×3◦ resolution. Specifically, the north edge of the
graph represent the radial direction away from the
Earth, while the center of the graph points along
track (towards the other GRACE spacecraft B).

Under Model A, the RMS of residues seem to
have simple modes. In the radial and tangential di-
rections they peak near −120◦ and −60◦ on the cen-
tral plane normal to the radial direction and passing
through the center of mass. In the normal direction,
they have local minima around −30◦ and 150◦ on
the same plane.

For Model B, more complicated behaviors
emerge as sharper fits are achieved. In the ra-
dial direction, there are peaks near (−120◦, 15◦)
and (60◦, 0◦) plus minima near (−30◦,−30◦) and
(150◦, 30◦) in SRF (longitude, latitude) coordinate.
For the tangential direction, the peaks are near
(−90◦, 30◦) and (90◦,−30◦) while the minima are
near (−120◦,−60◦) and (60◦, 60◦). In the normal
direction, we only get minima near (165◦,−45◦) and
(−15◦, 45◦).

Since we eliminated internal satellite dynamics by
assuming constant Y and Z, these results should
be dominantly driven by the gravity gradient com-
ponent and the (angular) acceleration profile from
GRACE on-board telemetry.

III.B. Further Studies

Although other spacecrafts in low-earth orbits with
angular acceleration profile similar to GRACE
should experience similar effects demonstrated in
this study, it would be interesting to see if and how
other angular acceleration profiles will influence the
results.

More sophisticated modeling on the misalignment
could also be developed. Most significantly is prob-
ably to relax the assumption that Y and Z are con-
stant, in order to model internal spacecraft dynam-
ics. Other factors such as the altitude of the orbit
could also be considered as an additional parameter
for a more general study, then the findings can be
more readily applied to future missions.

iThis is to ensure our results are free of numerical artifacts.
jSee GRACE product specification document3 pp. 16-18

IV. Conclusions

We have shown that there is a significant differ-
ence in predicting GRACE spacecraft orbit dynam-
ics whether we choose to model the misalignment
between the on-board accelerometer and the center
of mass of the spacecraft or not. Even assuming con-
stant misalignment in the body frame, we showed
that the gravity gradient effects and (angular) ac-
celeration of the spacecraft can still generate some
interesting deviations as a function of varying direc-
tion of the misalignment vector Y .
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Figure 2. RMS residues [m] in R-, T-, N-directions
(from top to bottom) under Model A. All results assumed
||Y || = 100[µm] without loss of generality.

Figure 3. RMS residues [m] in R-, T-, N-directions (from
top to bottom) under Model B. All results assumed ||Y || =
100[µm] without loss of generality.
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